Submit?Status
Description
Calculate the value of the sum:?nmod1?+?nmod2?+?nmod3?+ ... +?nmodm. As the result can be very large,you should print the value modulo?109?+?7?(the remainder when divided by?109?+?7).
The modulo operator?amodb?stands for the remainder after dividing?a?by?b. For example?10mod3?=?1.
Input
The only line contains two integers?n,?m?(1?≤?n,?m?≤?1013) — the parameters of the sum.
Output
Print integer?s?— the value of the required sum modulo?109?+?7.
Sample Input
3 4
4
4 4
1
1 1
0
Source
Educational Codeforces Round 5
//题意就不说了,直接上大神的思路了,很6的方法
题意:求解
       
       
思路:我们化简
       
       
 这样原式
       
       
 首先
       
       
       
       
#include<cstdio>
#include<cmath>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<queue>
#include<algorithm>
#define IN __int64
#define M 1000000007
using namespace std;
IN kp(IN a,IN n) 
{
	IN ans = 1;
	while(n)
	{
		if(n&1)
			ans=ans*a%M;
		a=a*a%M;
		n>>=1;
	}
	return ans;
}
int main()
{
	IN n,m,sum,ans1,i,j,nn;
	while(scanf("%I64d%I64d",&n,&m)!=EOF)
	{
		sum=n%M*(m%M)%M;
		nn=sqrt(n);
		ans1=0;
		for(i=1;i<=min(m,nn);i++)
			ans1=(ans1+n/i%M*i%M)%M;
		if(m>nn)
		{
			if(nn*nn==n)
				nn--;
			for(i=1;i<=nn;i++)
			{
				IN r=min(m,n/i);
				IN l=n/(i+1)+1;
				if(l>r||r<=nn)
					continue;
				ans1=(ans1+(l+r)%M*((r-l+1)%M)%M*kp(2,M-2)%M*i%M)%M;
			}
		}
		printf("%I64d\n",(sum-ans1+M)%M);
	}
	return 0;
}