这篇文章给大家分享的是numpy中dot()函数的使用,文中示例代码介绍的非常详细,对大家学习和理解dot()函数的计算方式有一定帮助,感兴趣的朋友接下来一起跟随小编看看吧。
 
如下所示:
a = np.arange(1, 5).reshape(2, 2)
b = np.arange(2, 6).reshape(2, 2)
c = a * b
dot = np.dot(a, b)
print(a)
print(b)
print(c)
print(dot)
打印出a
 
[[1 2]
 
[3 4]]
 
打印出b
 
[[2 3]
 
[4 5]]
 
a * b 每个相对位置的数值相乘1*2=2,2*3=6,3*4=12,4*5=20.比较简单,自己脑补一下
 
[[ 2 6]
 
[12 20]]
 
a.dot(b)也可以下成下面的那种形式,看你喜欢了.关键是算法
 
np.dot(a,b)
[[10 13]
 
[22 29]]
 
10=1*2+2*4 a[1][1]*b[1][1]+a[1][2]*b[2][1]
 
13=1*3+2*5
 
22=3*2+4*4
 
29=3*3+4*5 a[2][1]*b[1][2]+a[2][2]*b[2][2]
 
就这样了,规律自己找~
 
补充:Numpy矩阵乘积函数(dot)运算规则解析
 
np.dot(A, B)
A为二维m*n的举证,B必须为n*l的矩阵,l两个矩阵的n必须一致,也就是说A有多少列,B就必须有多少行,否则无法运算。结果得到m*l的矩阵
 
m*l = np.dot(m*n,n*l),m n l指维度,得到m*l的矩阵
运算顺序如下图:
 
 
程序演示如下:
import numpy as np
A = [[1, 2, 3], [4, 5, 6]]
B = [[3, 2], [4, 3], [4, 3]]
print(np.dot(A, B))
结果:
 
[[23 17]
 
[56 41]]
 
如果A和B的形状交换会怎么样呢?
 
import numpy as np
A = [[1, 2, 3], [4, 5, 6]]
B = [[3, 2], [4, 3], [4, 3]]
print(np.dot(B, A))
结果是这样哟!不是说形状一定是变小哟
 
[[11 16 21]
 
[16 23 30]
 
[16 23 30]]
 
这是A和B的形状不一样:
 
import numpy as np
A = [[1, 2, 3], [4, 5, 6]]
B = [[3], [4], [4]]
print(np.dot(A, B))
结果如下:
 
[[23]
 
[56]]

dawei

【声明】:站长网内容转载自互联网,其相关言论仅代表作者个人观点绝非权威,不代表本站立场。如您发现内容存在版权问题,请提交相关链接至邮箱:bqsm@foxmail.com,我们将及时予以处理。